Inhibiting mitochondrial Na+/Ca2+ exchange prevents sudden death in a Guinea pig model of heart failure.
نویسندگان
چکیده
RATIONALE In cardiomyocytes from failing hearts, insufficient mitochondrial Ca(2+) accumulation secondary to cytoplasmic Na(+) overload decreases NAD(P)H/NAD(P)(+) redox potential and increases oxidative stress when workload increases. These effects are abolished by enhancing mitochondrial Ca(2+) with acute treatment with CGP-37157 (CGP), an inhibitor of the mitochondrial Na(+)/Ca(2+) exchanger. OBJECTIVE Our aim was to determine whether chronic CGP treatment mitigates contractile dysfunction and arrhythmias in an animal model of heart failure (HF) and sudden cardiac death (SCD). METHODS AND RESULTS Here, we describe a novel guinea pig HF/SCD model using aortic constriction combined with daily β-adrenergic receptor stimulation (ACi) and show that chronic CGP treatment (ACi plus CGP) attenuates cardiac hypertrophic remodeling, pulmonary edema, and interstitial fibrosis and prevents cardiac dysfunction and SCD. In the ACi group 4 weeks after pressure overload, fractional shortening and the rate of left ventricular pressure development decreased by 36% and 32%, respectively, compared with sham-operated controls; in contrast, cardiac function was completely preserved in the ACi plus CGP group. CGP treatment also significantly reduced the incidence of premature ventricular beats and prevented fatal episodes of ventricular fibrillation, but did not prevent QT prolongation. Without CGP treatment, mortality was 61% in the ACi group <4 weeks of aortic constriction, whereas the death rate in the ACi plus CGP group was not different from sham-operated animals. CONCLUSIONS The findings demonstrate the critical role played by altered mitochondrial Ca(2+) dynamics in the development of HF and HF-associated SCD; moreover, they reveal a novel strategy for treating SCD and cardiac decompensation in HF.
منابع مشابه
Inhibiting Na+/K+ ATPase Can Impair Mitochondrial Energetics and Induce Abnormal Ca2+ Cycling and Automaticity in Guinea Pig Cardiomyocytes
Cardiac glycosides have been used for the treatment of heart failure because of their capabilities of inhibiting Na+/K+ ATPase (NKA), which raises [Na+]i and attenuates Ca2+ extrusion via the Na+/Ca2+ exchanger (NCX), causing [Ca2+]i elevation. The resulting [Ca2+]i accumulation further enhances Ca2+-induced Ca2+ release, generating the positive inotropic effect. However, cardiac glycosides hav...
متن کاملEnhancing mitochondrial Ca2+ uptake in myocytes from failing hearts restores energy supply and demand matching.
Mitochondrial ATP production is continually adjusted to energy demand through coordinated increases in oxidative phosphorylation and NADH production mediated by mitochondrial Ca2+([Ca2+]m). Elevated cytosolic Na+ impairs [Ca2+]m accumulation during rapid pacing of myocytes, resulting in a decrease in NADH/NAD+ redox potential. Here, we determined 1) if accentuating [Ca2+]m accumulation prevents...
متن کاملMetabolic consequences of a species difference in Gibbs free energy of Na+/Ca2+ exchange: rat versus guinea pig.
The Gibbs free energy of the sarcolemmal Na+/Ca2+ exchanger (DeltaG(Na/Ca)) determines its net Ca2+ flux. We tested the hypothesis that a difference of diastolic DeltaG(Na/Ca) exists between rat and guinea pig myocardium. We measured the suprabasal rate of oxygen consumption (VO2) of arrested Langendorff-perfused hearts of both species, manipulating DeltaG(Na/Ca) by reduction of extracellular N...
متن کاملInhibition of Na+/Ca2+ exchange in membrane vesicle and papillary muscle preparations from guinea pig heart by analogs of amiloride.
Na+/Ca2+ exchange is inhibited in both guinea pig cardiac membrane vesicles and papillary muscles in a concentration-dependent fashion by several analogs of the pyrazine diuretic amiloride. Structure/activity studies based on transport measurements in vesicles prepared from guinea pig left ventricle indicate that hydrophobic substitutions at the terminal nitrogen atom of the guanidinium moiety ...
متن کاملAntisense inhibition of Na+/Ca2+ exchange during anoxia/reoxygenation in ventricular myocytes.
This study investigated the role of the Na+/Ca2+ exchanger (NCX) in regulating cytosolic intracellular Ca2+ concentration ([Ca2+]i) during anoxia/reoxygenation in guinea pig ventricular myocytes. The hypothesis that the NCX is the predominant mechanism mediating [Ca2+]i overload in this model was tested through inhibition of NCX expression by an antisense oligonucleotide. Immunocytochemistry re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation research
دوره 115 1 شماره
صفحات -
تاریخ انتشار 2014